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Abstract
This review deals with the role of electron–phonon (e–ph) coupling in quantum
transport of carbon nanotubes. First, the case of low-energy phonons and
weak localization phenomena is addressed, followed by a summary of inelastic
scattering lengths within the Fermi golden rule. A second part outlines the
contribution of high-energy optic phonon modes, and discusses the applicability
limits of semi-classical transport theory. The computational methodologies used
to deepen the phonon-induced dephasing or inelastic transmission range from
the time-dependent Schrödinger equation and Kubo framework to a novel many-
body treatment of e–ph interaction.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Carbon nanotubes (CNTs) are fascinating low-dimensional objects that offer an outstanding
playground to challenge the quantum theory at the nanoscale, manifesting novel physical
phenomena. Amongst a wealth of eminent properties, electronic transport stands as a driving
force to scientific excitement and technological innovation [1, 2] in CNTs.

Single-walled metallic carbon nanotubes (SWNTs) behave as long ballistic conductors [3]
owing to the reduced backscattering from elastic disorder (vacancies, topological
defects,...) [4]. Within the Fermi golden rule (FGR), the estimated elastic mean free paths
usually reach several micrometres if the Fermi level is located close enough to the charge
neutrality point (CNP). This property has been confirmed experimentally when measuring
the conductance of small-diameter metallic tubes contacted to palladium electrodes [5].
Semiconducting nanotubes have been consequently used to engineer ballistic field effect
transistors (CNT-FETs) [6, 7].

Ballistic transport is however limited to the low-bias regime, for which propagating
electrons can only be coupled to low-energy acoustic phonon modes [8]. By increasing the
potential bias across the nanotube, the contribution of electron–phonon mediated backscattering
is assumed to be steadily enhanced until a saturation regime is reached in the I –V
characteristics of metallic tubes [9–11]. This not only brings serious performance limitations in
the current-carrying capacity of CNTs, but also raises fundamental questions about the nature
of inelastic quantum transport in these unique objects [12–19].

In the high-bias regime, on the basis of semiclassical transport description, the inelastic
scattering lengths are usually estimated to be in the order of a few tens of nanometres.
Experimentally, Park and co-workers [10] have proposed some quantitative estimation of
inelastic mean free paths (�ie) in both low-bias and high-bias regimes, on the basis of a
phenomenological law between the measured conductance and �ie, namely

G ∼ 2e2

h

�ie

L tube
. (1)

At low bias, their data indicate that �ie � 1.6 μm, which has been attributed to
acoustic modes (�ac), whereas for bias voltage of the order of 1 V �ie � 10 nm has been
assigned to optic (�opt) and/or zone-boundary phonons (�zb). Other estimations obtained by
fitting of the experimental data with semi-classical Monte Carlo models [5] lead to typical
values �ac � 300 nm and �opt � 15 nm for acoustic and optic modes respectively. On
the other hand, within the framework of effective mass formula and deformation potential
approximation [8, 10], a crude theoretical estimation of the electron–acoustic phonon scattering
length yields �ac � 2.4 μm in the low-bias regime, whereas �opt � 180 nm and �zb � 37 nm
were obtained in the high-bias regime. By applying a Mathiessen rule, a total scattering
length of 30 nm was inferred. To reconcile theory with experiment a hot phonon scenario
was proposed in [13]. The discussion is not yet settled [11, 19] and many questions regarding
the nature of e–ph interaction in these systems remain open: What is the ultimate mechanism
leading to current saturation? Is it within the reach of a semiclassical description of transport?
If a hot phonon scenario is in place, can we rely on a perturbative scheme to provide answers
in such an out-of-equilibrium situation?

In addition to the above-mentioned studies, e–ph coupling in carbon nanotubes
has been intensively investigated theoretically in relation with temperature-dependent
resistivity in metallic carbon nanotubes [24], excited-state carrier lifetime [25–27], excitonic
physics [28], temperature dependence of the band gap of semiconducting nanotubes [29],
superconductivity [30], and phonon-assisted tunnelling in the Coulomb blockade regime [31].
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The impact of e–ph coupling on the physical properties of carbon nanotubes is thus of broad
and prime importance in deepening the exceptional physical properties of CNTs.

In this review article, we focus on quantum transport through CNTs in the presence of e–
ph interaction. Rather than giving an extensive review of the whole literature in this rapidly
evolving field, we concentrate on some recent developments that go beyond semiclassical
transport theories (Boltzmann equation). In section 2, we start by presenting a time-dependent
one-body description of electronic motion in the presence of lattice vibrations. A scheme to
solve the associated time-dependent Schrödinger equation as well as quantum transport in the
Kubo framework is developed [15]. By using this scheme, the role of low-energy phonons in
weak localization phenomena is discussed in section 3. Section 4 deals with the calculation
of e–ph scattering rates within the Fermi golden rule. Recent experimental results on the
current-carrying capacity in metallic nanotubes are briefly outlined in section 5, followed
by a discussion of the role of high-energy phonons in section 6. Section 7 provides a novel
perspective based on a many-body description of e–ph interaction [32, 33].

2. Vibration-mediated time-dependent Hamiltonian and Kubo framework

To investigate the quantum dephasing and decoherence of electronic transport in carbon
nanotubes, owing to the coupling of electrons to the vibrational modes, some of us have recently
proposed a new numerical approach which consists in computing the time-dependent quantum
dynamics of electronic wavepackets (for π -electrons), under the action of a time-dependent
Hamiltonian that mimics the atomic distortions in real space, as well as the strength of e–ph
coupling [15]. For selected phonon modes (acoustic or optic), the time-dependent Schrödinger
equation (TDSE) is solved by splitting the total elapsed time into finite intervals during which
the energetics is given by a frozen Hamiltonian. Then, within the Kubo formalism and
framework, the conductance scaling can be studied and, for low-energy electrons, the energy-
dependent coherence length scaling can be extracted from the conventional weak localization
phenomenology [34]. In this section, we present the energetics of the system, while the
discussion on the effects of inelastic scattering on weak localization is deferred to the next
section.

The real space resolution of the TDSE is achieved as follows [36]. The initial starting
Hamiltonian is the π -effective model:

Ĥeff =
∑

i

εi |πi〉〈πi | +
∑

i,δ=1,3

γ (ri,i+δ)(|πi〉〈πi+δ | + h.c.), (2)

where onsite energies are either all set to zero in the absence of elastic disorder, or taken at
random within the interval [−W/2, W/2], when simulating an elastic disorder (Anderson-
type disorder). The overlap integrals between |πi〉 and |πi+δ〉 orbitals are restricted to first
neighbours and are given by γi,i+δ = γ0 for all pairs in the case with zero phonons. The effect
of phonon vibrations and e–ph couplings is further included by assuming that propagating
wavepackets will suffer from a time-dependent change of the electronic energetics (γi,i+δ-
matrix) of the underlying effective Hamiltonian. In a weakly disordered two-dimensional (2D)
system, similar treatment of time-dependent perturbation in the weak localization regime has
been shown to correctly reproduce frequency-dependent conductivity corrections [38].

The e–ph interaction is thus encoded through the time-dependent modulation of the
hopping interaction, that is γ0 → γ (ri,i+δ), where ri,i+δ is the bond length. The bond-length-
dependent Hamiltonian matrix elements γ are calculated by using the analytical expression
given by Porezag et al [39], that is

γ (ri,i+δ) = γ (δ̂ · (Ri+δ(t) − Ri (t))), (3)
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Figure 1. Representation of phonon polarization vectors for the twist mode (TW) at q = 0, together
with longitudinal optic (LO) and zone-boundary modes A′

1 and E′
1.

where the C–C bond length is ri,i+δ = δ̂ · (Ri+δ − Ri ), with δ̂ the bond direction. The atomic
positions for a given phonon mode with wavevector q and frequency ων(q) are given by [15]

Ri = R0
i + Aν(q)eν(q) cos(q · R0

i + ων(q)t), (4)

where R0
i are the equilibrium atomic positions, while A, e and ω are the phonon amplitude,

eigenvector and frequency, respectively. As usual, the phonon amplitude can be expressed
by [40]

Aν(q) =
√

h̄nν(q)

2mcων(q)
. (5)

Here mc is the atomic carbon mass, while nν(q) is the phonon occupation number for phonon
branch ν, as a function of phonon wavevector q. For thermal equilibrium, if nν(q) =
1/(eh̄βων(q) − 1) is the Bose–Einstein occupation factor, β = kBT and h̄ων(q) is the phonon
energy.

The phonon dispersion relations and eigenvectors are computed from the dynamical matrix
in an SWNT [1]. Due to the CN symmetry of the SWNT, the 6N × 6N dynamical matrix is
decoupled to N 6 × 6 matrices (N is the number of hexagons in a nanotube unit cell) [25].
We then work within the graphene unit cell, which has only one (A, B) atom pair. In the
calculations, the z axis is chosen along the tube axis, while the x axis passes through the A
atom in the graphene unit cell.

The important phonon modes in the transport of metallic nanotubes are twisting (TW),
longitudinal optic (LO), A′

1, and E′
1 modes, whose frequencies are respectively 0, 1596, 1369,

and 545 cm−1. The symmetries of these modes are shown in figure 1 for illustration.
The phonon polarization vector plays an important role in the e–ph coupling. Amongst

the zone-centre phonon modes, the LO mode is the one that could most efficiently contribute
to inelastic backscattering, whereas among the boundary phonon modes, the dominating
contribution is expected to come from the A′

1 mode [8, 10]. Concerning the TW mode, the
two atoms of the unit cell move along the same direction along the tube circumference (see
figure 1). In contrast, for the LO mode, the two atoms of the unit cell move one against the
other along the z axis (see figure 1). For the A′

1 mode, the six atoms on a hexagon move

4
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towards or away from the centre of the hexagon (see figure 1), whereas for E′
1 mode with

higher frequency, the tube vibrates, like pulling the tube at the two ends.
In our model, however, absorption and emission are both assumed to be related to a given

amplitude A0 for a initially thermalized phonon occupation at room temperature, for both LO
and A′

1 modes. However, it has been recently pointed out that such a hypothesis might not
be valid during high-field electron transport, since the high-energy phonons’ excitation rate is
faster than their thermalization rate, resulting in a hot phonon generation process [13]. Under
that circumstances, one can phenomenologically relax the phonon occupation number in the
range of 2–5 [13].

The TDSE is solved by dividing the total evolution time (t = n
T ) in small time steps

T , during which the Hamiltonian energetics is kept constant. This can be expressed as

|�(t)〉 = exp

(
−i

Ĥt

h̄

)
|�(0)〉,

=
∏

α=1,n

e−iHα
T |�(0)〉 (6)

where the whole γi j(α) coupling factors as well as onsite energies (defining Hα) will be
modified according to the dynamical motion of atomic coordinates, given by equations (2)
and (4). The starting wavepacket is a normalized random phase state that allows efficient
treatment of transport in the coherent regime [36]. The γi j terms are modulated by the phonon
modes, encoding the information on phonon frequency, polarization vector and amplitude. The
chosen time step is about one tenth of the oscillation period of the considered phonon mode
(given in units of h̄/γ0, so 
T = 1 corresponds to 0.227 fs). We have considered the effect of
low-energy modes (acoustic TW mode) with time period of the order of 100 fs, and LO mode
for which the period is 20 fs. The chosen time step was 
T = 7(h̄/γ0) � 1.6 fs, and the
total evolution time t = 35 000h̄/γ0 ∼ 10 ps, so the maximum propagation length for ballistic
transport is of the order of 5 μm. Our chosen (10, 10) nanotube has about 20 000 unit cells
(total length of ∼5 μm), with periodic boundary conditions, a fact that allows us to reduce the
boundary effects, as explained elsewhere [36].

3. Low-energy phonons and weak localization phenomenology

The theory of localization in disordered mesoscopic systems is a long-standing issue, based
on the quantum interference effects (QIE) on charge transport [20, 21]. These QIE between
clockwise and counterclockwise backscattering paths develop in the so-called coherent regime,
and yield an increase of the return probability to the origin for propagating wavepackets. The
contribution of QIE is usually reduced by several inelastic scattering sources that produce
decoherence of the wavepacket phase. At low temperature the main decoherence mechanisms
are e–ph and electron–electron couplings. Within the framework of weak localization theory,
it has been possible to derive perturbatively the relation between the measured conductance
G(E), its quantum correction δGWL(E) and the coherence length Lφ that fixes the scale
beyond which QIE are destroyed. The estimation of the coherence lengths is a central issue
in mesoscopic physics, and weak localization provides an elegant framework to extract the
behaviour of Lφ , that mainly depends on the dimensionality of charge transport [41, 34].

Stojetz and co-workers [42] have recently succeeded in measuring the energy dependence
of the coherence length scale, by using an efficient back-gate electrode able to move the Fermi
level position and explore the physics through different subbands. The magnetoresistance data
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Figure 2. (a) Representation of electronic propagating paths between two points P and Q (a); several
paths enclosing a loop returning back to some origin (b), with clockwise (−) and counterclockwise
(+) parts; mechanism of decoherence on those paths (arrow indicate inelastic scattering events
occurring at different points for (+) and (−) paths.

were well fitted by the conventional theory as [21]

δGWL = −A
e2

π h̄L

(
1

L2
φ

+ W 2e2 B2

3h̄2

)−1/2

, (7)

with L the tube length, W the diameter and A a normalization factor. From this expression,
the coherence length can be quantitatively extracted. Therefore, by using Lφ(T ) =
(G DLh̄2/2e2kB)1/3T −1/3, the diffusivity was deduced D = 100 cm2 s−1 (at zero gate voltage)
as well as the corresponding elastic mean free path �e = 2D/vF ∼ 20 nm. By reproducing
this calculation at several values of the gate voltage, a corresponding energy-dependent pattern
was revealed. The spectacular observation was the systematic decrease of Lφ (as well as �e)
near the onsets of each new subband (van Hove singularity positions). Although the energy
dependence of �e as was revealed numerically [36], the energy dependence of Lφ was to date
unexplored.

Finally, by studying the temperature dependence of Lφ , the decoherence mechanism was
attributed to electron–electron scattering, in agreement with conventional theory. Electron–
electron and e–ph scattering are two different sources of quantum dephasing, but within weak
localization theory the resulting decoherence phenomenon is of similar nature, and for instance
the derivation of the temperature-dependent coherence time follows some general formal
treatment [43, 34, 44].

Here, based on all those observations, we investigate the energy dependence of the
coherence length scales in carbon nanotubes in the situation where e–ph interaction becomes
the dominant source of decoherence.

The physical origin of the coherence length can be simply understood as follows. First,
weak localization corrections are evaluated when computing the conductance for wavepacket
propagation between two real space positions, let us say from P to Q: G = 2e2

h PP→Q, which can
be further expanded as PP→Q = ∑

i |Ai |2 + ∑
i �= j AiA j ei(αi −α j ), where the summation over

probability amplitudes (denote Ai ) includes all possible electronic pathways i (see figure 2 for
illustration). Here one separates the total probability between the classical and interference
parts. Then averaging over (elastic) disorder configurations reduces the contribution of
interference terms to a single class, namely the paths that include a finite loop which return
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to some initial point, let us say O, that can be further expressed analytically as

PO→O = |A+eiα+ + A−e+iα− |2 = 4|A0|2, (8)

since clockwise and counterclockwise probability amplitudes have the same phase factor in the
case of time reversal invariance [34]. Weak localization thus results from the enhancement
(doubling) of the return probability to the origin, with a consequent increase of quantum
resistance.

To understand decoherence, one must realize that when inelastic mechanisms come into
play on top of coherent transport, then clockwise and counterclockwise pathways accumulate
a different superimposed random phase factor eiα+ = 〈e+iφ〉 = ∫

dφ P(φ)eiφ and eiα− =
〈e−iϕ〉 = ∫

dϕ P(ϕ)e−iϕ , respectively. These expressions are derived by considering that the
coherent propagating wavepackets are coupled to some external fluctuating potential, such
as a thermal bath or fluctuating electromagnetic field that respectively encode the e–ph and
electron–electron interaction processes [44]. P(φ) denotes the probability distribution function
for the phase ϕ, that results from the combination of inelastic and elastic scattering processes,
both having a probabilistic nature along the electronic paths (figures 2(c) and (d)). Besides, if
u(r, t) defines the phonon displacement field, these phase factors are physically related to the
Lagrangian of the system, through its action along the electronic pathways, giving [44]

φ, ϕ = mc

h̄

∫
dt v · (v ·∇)u(r, t) − 1

d
v2∇ · u(r, t), (9)

with mc the atomic carbon mass, d the space dimensionality, and r, v describing the position
and related velocity of the electronic pathways [44], while the summation is performed for an
elapsed time required to close the relevant loop.

The coherence time τφ is the time beyond which a full uncertainty of the phase difference
is achieved between clockwise and counterclockwise paths (that is when the width of the
distribution P(ϕ) becomes of the order of ∼2π ). Accordingly, the coherence length Lφ(E)

is the length associated with the loop that is closed after an elapsed time t = τφ . Finally, within
this phenomenology, the quantum correction of conductance is given by the relevant integrated
return probability to the origin [34]:

δGWL ∼ 2e2 D

h

∫ ∞

0
dt PO→O(t)(e−t/τφ − e−t/τe ), (10)

thus the quantitative measure of conductance correction is driven by the independent calculation
of the return probability to the origin in the coherent regime on one side, and estimation of
the relevant coherence time on the other side. In the following, our developed computational
approach will allow us to evaluate the scaling properties of the quantum correction in the
coherent regime, whereas the coherence time will be given by the considered total elapsed
time, at which the TDSE will be computed. By doing so, the energy dependence of the weak
localization pattern should be correctly reproduced without however providing quantitative
information about the exact value of the coherence length scales, or their temperature
dependences. This point should be considered on the basis of a microscopical modelling of
e–ph interaction and rigorous quantum mechanical treatment of inelastic transport.

One must notice that weak localization has not been reported in single-walled nanotubes,
but only in multiwalled carbon nanotubes, in which the Fermi level position is likely to lie
within higher massive energy subbands. This is not surprising since transport physics in single-
walled nanotubes is dominated by the massless subband (close to the charge neutrality point),
and due to the pseudospin symmetry, the backscattering is anomalously small [4], as well
as its further weak localization correction [35]. This observation has also been reported in
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Figure 3. Left panel: (top) time dependence of the diffusion coefficient (D(t)) for several values

of Anderson disorder W . Time is in h̄/γ0 units, whereas D is in Å
2
γ0/h̄ units; (bottom) energy

dependence of the Kubo conductance for the corresponding disorder potentials. Right panel: energy
dependence of the �e, with superimposed density of states (dashed line) to pinpoint the onsets of
new subbands.

experiments on multiwalled nanotubes by exploring weak localization through massless and
massive subbands [42].

In our formalism, the resolution of the TDSE is made by expanding the evolution operator
e−iĤt as a product of short-time evolution steps e−iĤ
T , for a total evolution time t = n
T .
Typically 
T is one tenth of the oscillation period of the considered phonon mode. During
each elapsed time 
T , the Hamiltonian energetics is fixed by the static part of the Anderson
potential, whereas the time-dependent part, due to long-range vibrational modes, varies in
conjunction with the associated overlap integral modulations. A similar treatment of dephasing
has been implemented either by defining an artificial oscillating behaviour of off-diagonal
electronic couplings [38], or through an onsite time-dependent perturbation [45]. In [38],
scaling properties of the quantum conductance were analysed in the weak localization regime,
whereas the metal–insulator transition was investigated in [45].

The Kubo conductance is related to the diffusion coefficient Tr[δ(E − Ĥ)(X̂ (t) −
X̂ (0))2]/ Tr[δ(E − Ĥ)], where δ(E − Ĥ) is the spectral measure operator, whose trace gives
the total density of states, while X̂ (t) is the position operator in the Heisenberg representation.
From the time dependence of L2(E, t) = 〈�(0)|(X̂ (t) − X̂ (0))2|�(0)〉, one derives the
scaling properties of the conductance [36], together with the conduction regime. The presence
of lattice defects produces elastic scattering of the π -electrons, and leads to a transition of
the quantum spreading from a ballistic-like to a diffusive regime, at which the diffusion
coefficient will saturate. This allows us to estimate the intrinsic elastic mean free path from
L2(E, t)/t → �ev(E) for a given disorder strength.

In the right panel of figure 3, �e is shown for three amplitudes of the elastic disorder
potential W = {0.07, 0.1, 0.5}γ0/h̄. Close to the CNP, �e(E = 0) can be computed analytically
within the FGR. Indeed, �e = vFτe, with vF = 3accγ0/2h̄ the Fermi velocity (acc = 1.44 Å),
whereas τe is the elastic scattering time. For the Anderson disorder potential, an analytical
derivation provides [3, 36]

�e = 18accγ
2
0

W 2

√
n2 + m2 + nm. (11)

8
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The obtained values for �e at the CNP are given by �e(E = 0, W = 0.05γ0) =
2800 nm, �e(E = 0, W = 0.1γ0) = 800 nm and �e(E = 0, W = 0.5γ0) = 37 nm. Note that
in figure 3, �e(W = 0.5γ0) → 8 × �e(E = 0, W = 0.5γ0), for the sake of clarity. One thus
finds that �e(W = 0.05)/�e(W = 0.1) � 3.5, whereas �e(W = 0.05)/�e(W = 0.5) � 80, in
good agreement with the 1/W 2 scaling given by equation (11). At higher energies, �e decreases
significantly with some modulations at the onsets of new subbands.

By defining τ (L) the time at which L2(t) = L2, the conductance at such scale is defined by
G � e2n(E)L(τ (L))/τ (L) [36]. In figure 3 (left panel), the quantum conductance is shown
for the same parameters for random potential. The superimposition of the additional time-
dependent part encoding the TW mode (not shown here) does not bring significant changes.
At W = 0.0 the effect of phonon vibrations is negligible in most of the spectrum, except at
some particular energies ±0.2 eV, that correspond to a particular phonon-induced symmetry-
breaking effect [15]. For disorder W = {0.07, 0.1}γ0/h̄, the conductance takes values much
smaller than in the ballistic case (W = 0 and G(E) = N⊥G0, with N⊥ the number of available
channels, G0 = 2e2/h), and the superimposed effect of phonons remains weak.

To extract the information about the energy dependence of the coherence length scales,
we proceed as follows. In the weak localization regime, the quantum correction of the Drude
conductance is computed by solving the so-called Cooperon equation [34]. Assuming a quasi-
1D geometry of the system, it has been shown that decoherence either due to e–ph or electron–
electron scattering is described by the same approach [43], and that the conductance reads

GKubo(E) = 2e2

h

(
N⊥(E)

�e(E)

L(E, t)
− δGWL(E)

)
, (12)

where L(E, t) is the length scale that is energy dependent due to the velocity v(E), and
scales as L(E, t) = √

v(E)�et in the diffusive regime, whereas the term δGWL(E) gives
the contribution of QIE beyond the scale of �e. Within the weak localization theory, and for
quasi-1D systems, this contribution is shown to be related to the coherence length Lφ(E) as
δGWL(E) = Lφ(E)/L(E, t) whereas

τφ(E) = L2
φ(E)/v(E)�e. (13)

Therefore, by exploring the scaling behaviour of δGWL(E), one can access relevant physical
information about the fluctuations of the coherence length scales in the weak localization
regime.

Figure 4 (left panel) shows the conductance computed at two different evolution times,
t = 3500h̄/γ0 and t = 35 000h̄/γ0 � 8 ps (dashed curves). One clearly sees a downscaling of
the conductance with time, that comes from the classical linear downsizing in the diffusive
regime �e(E)/L(E, t), together with the increasing QIE contribution of δGWL(E, t) with
time (or equivalently length) scale. In the same figure, we also report the classical term
Gclass(E) = N⊥(E)G0�e(E)/L(E, t) (bold curve), along with the quantum interference term
δGWL(E, t) = GKubo(E, t) − Gclass(E) (dotted curve), at t = 35 000h̄/γ0. These results
are obtained for W = 0.07γ0 and no phonon dephasing, and adding the time dependence
modulations of the integral overlap associated to the TW mode does not bring any appreciable
changes [37].

Figure 4 (right panel) gives Lφ(E) (main frame) and τφ(E) (inset) deduced from
equation (12) for W = {0.1γ0, 0.2γ0, 0.5γ0} (bold, dotted and dashed curves respectively).
The values range within (10 nm, 1000 nm) in the considered energy window. One notes
that for energies �0.9 eV and within the considered evolution time, the quantum correction
δG(E) � 0, so no meaningful information about the coherence length can be deduced since
the transport remains quasi-ballistic. In contrast, the coherence time shows reversed behaviour,
owing to the strong decrease of �e.

9
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Figure 4. Left panel: conductance for the disordered (10, 10) tube with W = 0.07γ0, taken
at evolution times t = 3500h̄/γ0 and t = 35 000h̄/γ0 (dashed curves). The bold curve gives
the classical part Gclass(E) = G0 N⊥�e(E)/L(E, t), whereas the dotted curve gives the quantum
correction δGWL(E) (t = 35 000h̄/γ0). Right panel: coherence lengths deduced from δGWL(E) =
Lφ(E)/L(E) computed at t = 35 000h̄/γ0, and for several values of disorder potential. Inset:
corresponding τφ(E) for the same parameters. In addition to the random short-range disorder, a
TW mode modulation is introduced.

In the experimental situation [42], the fluctuations of Lφ(E) due to electron–electron
scattering were found to scan the range (10 nm, 60 nm), with systematic decrease near
the onsets of new subbands. The values given here (for the chosen evolution time) are
thus physically reasonable, since e–ph scattering is expected to lead to weaker decoherence
effect [43]. In the following section we show how these e–ph inelastic scattering rates can be
calculated by using the Fermi golden rule.

4. Relaxation time and mean free path in armchair tubes by the Fermi golden rule

Hereafter, we compute the inelastic electronic transport length scales (mean free paths)
associated to a selected vibrational mode coupling. The scattering rate is evaluated from
the Fermi golden rule [25, 47], assuming that the e–ph coupling that induces the electronic
transition remains perturbative in the sense that it can be described by first-order perturbation
theory, with equilibrium distributions for both electrons and phonons. Several computational
approaches can be used, from first-principles calculations to extended tight-binding methods or
hybrid approaches. Here the latter one is followed and the results presented are obtained using
an extended tight-binding model based on density functional calculations.

The starting Hamiltonian assumes independent electrons moving in the crystalline
potential H = −(h̄2/2m)∇2 + V , where the first and second terms are, respectively, the
kinetic and potential energies, with V = ∑

Ri
v(r − Ri ) and v is the Kohn–Sham potential of

a neutral pseudoatom [39]. The periodic displacements of atoms around equilibrium positions
R0

i described by the relevant vibronic modes give rise to the e–ph coupling

δV =
∑

R0
i

v[r − R0
i − S(R0

i )] − v(r − R0
i )

≈ −
∑

R0
i

∇v(r − R0
i ) · S(R0

i ), (14)
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Figure 5. The e–ph scattering processes near the Fermi level (the K and K′ points) of an
armchair tube. The processes 1 and 2 are the intravalley forward and backward scattering and
the corresponding phonons are around the � point. Processes 3 and 4 are the intervalley forward
and backward scattering respectively, and the corresponding phonons are around the K point.

where S(R0
i ) is the site position deviation from the equilibrium site R0

i caused by a vibration.
The vibration S(R0

i ) for the phonon mode (ν, q) is related to the phonon amplitude, polarization
vector and energy. The inelastic scattering rate between an electronic state |�α,k〉 from band α,
with momentum k and energy εα,k, and another |�α′,k′ 〉 with different energy, due to a phonon
of momentum q in branch ν and energy h̄ων(q) can be derived by the first-order perturbation
theory (FGR) as [13, 25]:

1/τ = 2π

h̄
nν(q)|M|2ρ, (15)

with ρ the density of states for the final states, M the e–ph matrix element, and nν the phonon
number, as defined earlier.

The e–ph matrix element between states |�α,k〉 and |�α′,k′ 〉 is calculated by the
deformation potential [46],

M(k+q)α′,kα = 〈�α′,k+q|δV |�α,k〉. (16)

It is convenient to introduce an unnormalized e–ph matrix element D by [46]

M = −√
nν(q)h̄/(Numcων(q))D, (17)

with Nu the number of graphene unit cells in the SWNT. The density of states ρ is

ρ = Nu S/πdt h̄vF, (18)

with S the area of a 2D graphene unit cell [25, 47] and vF the electron velocity near the Fermi
level.

For armchair SWNTs, the cutting line [49] for metallic bands passes through the edge KK′
of the 2D Brillouin zone (BZ) shown in figure 5. Near the Fermi level there are four kinds of
e–ph scattering processes. The phonon modes for intravalley forward and backward scattering
(processes 1 and 2 in figure 5) are those around the � point modes. The phonon modes for
intervalley forward and backward scattering (processes 3 and 4 in figure 5 are those around
the K point modes. Therefore, for e–ph scattering near the Fermi level, we have six �-point
modes, i.e., longitudinal acoustic (LA), TW, radial breathing (RBM), out-of-plane transverse

11
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Table 1. The e–ph coupling strength |D|, relaxation time τ , and mean free path � for each mode
near the Fermi level of a (10, 10) tube. The wavevector q used to express |D| for the TW mode is

in units of Å
−1

.

Forward Backward

Mode Freq. (cm−1) |D| (eV Å
−1

) τ (ps) � (nm) |D| (eV Å
−1

) τ (ps) � (nm)

LA 0 0 0 0 0
TW 0 0 0 2.462q 2.14 1812.2
RBM 187.10 1.53 0.56 469.9 0 0
oTO 889.85 0 0 9.94 1.25 8354.1
TO 1591.51 7.17 0.56 470.1 0 0
LO 1595.51 0 0 6.66 0.65 546.8

E′
2 (1) 527.69 1.91 1.57 1 320.0 0 0

E′
2 (2) 545.47 0 0 0.95 8.72 7326.6

A′
2 988.82 0.48 39.6 33 267.3 0 0

E′
1 (1) 1231.76 11.22 0.18 154.6 0 0

E′
1 (2) 1249.52 0 0 10.82 0.20 165.6

A′
1 1368.88 0 0 9.94 0.27 228.2

optical (oTO), TO, and LO, and six K-point modes, i.e., two E′
2 modes, a A′

2 mode, two E′
1

modes, and a A′
1 mode.

In table 1, we list the e–ph coupling strength (|D|), relaxation time (τ ) and mean free path
(�) of a (10, 10) tube for each mode for electrons with an initial state energy 0.25 eV above
the Fermi level [46]. The phonon frequencies for the modes near the � and K points are also
listed. For a given energy, there are two initial states around a K point with one on the line �K
and the other on the line KM. In table 1, |D| is the averaged value for the two points on the �K
and KM lines, i.e., |D| = (|D|�K + |D|KM)/2. The matrix element |D| has similar values for
emission and absorption processes. In table 1 we only show |D| for emission processes.

Table 1 indicates that for acoustic phonon modes, the e–ph coupling for back scattering
mainly comes from the TW mode, and the resulting mean free path can be longer than 1 μm,
which agrees with the transport measurements on SWNTs with low bias voltage [50, 10]. For
high-energy phonon modes, the e–ph coupling of back scattering is dominated by the LO, A′

1
and one of the E′

1 modes. The resulting mean free path for a (10, 10) tube is about 76.6 nm,
which agrees with that reported by other calculations [5, 10, 15]. In our calculations, a thermal
equilibrium at a temperature T = 300 K is assumed. For low-energy phonons, � is inversely
proportional to T , while for high-energy phonons, � is independent of T . The above conclusion
is valid only under thermal equilibrium conditions. In the case of thermal unequilibrium, hot
phonons will help to reduce �.

For metallic tubes in the low-bias and high-bias ranges, we get two simple expressions for
the scattering length, respectively, �TW = 400.46 × 103dt/T and �op = 56.4dt , where �TW is
in units of nm.

In this section we have presented a scheme to calculate the e–ph scattering rates based on
the FGR. However, as we will see in the next section, experimental estimations [9, 5, 10] of
these rates gives e–ph scattering lengths of the order of 10–15 nm. This order of magnitude
difference motivated the proposal of a hot phonon scenario in [13].

5. Current-carrying capacity in metallic carbon nanotubes and current saturation

The strong current-carrying capacity of carbon nanotubes opens novel possibilities to improve
the performances of nanoscale devices either in the field of interconnects or field effect
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transistors. The study and understanding of current–voltage characteristics of both metallic
and semiconducting nanotubes is thus a crucial point to fix the limits for further technological
applications.

Yao and co-workers were the first to explore the I (V ) characteristics of metallic tubes
in the high-voltage regime [9]. Their study of small-diameter metallic tubes with low contact
resistance to the voltage probes shows a linear regime followed by a saturation regime for
voltage of the order of 1 V, weakly temperature dependent. The overall I (V ) characteristic is
described by a law

I = V

R0 + V/I0
, (19)

with R0 and I0 two constants giving respectively a voltage-independent intrinsic resistance and
a current saturation value (weakly dependent on the diameter of the nanotube), and found to
be of the order of 20–30 μA. The interpretation assumes that the saturation comes from the
strong inelastic backscattering of electrons coupled to optic (or zone boundary) vibrational
modes. In this scenario, the inelastic mean free path is the length the electrons need to traverse
to accumulate an additional energy of h̄�ph, which is the energy of the relevant phonon mode
that at this point is assumed to be instantaneously activated and that will backscatter electrons
with unit probability. Assuming a linear potential drop between voltage probes separated by
L, i.e. V (l) = Vbias(1 − l/L), l being the distance from the source, then the energy gain reads
e
∫ �ie

0 ∂V/∂l dl = h̄�ph, from which one straightforwardly deduces that �ie = (h̄�phL)/eVbias.
Besides, assuming that the length-dependent resistance can be split into two contributions, by
virtue of the Mathiessen rule, one writes

R(L) = h

4e2

L

�e
+ h

4e2

L

�ie
= R0 + h

4e2

eVbias

h̄�ph
= R0 + Vbias

I0
, (20)

with R0 = h/4e2 L tube/�e the intrinsic resistance and �e the elastic mean free path, whereas
I0 = (4e/h)h̄�ph, which is indeed equal to 20–30 μA depending on the chosen phonon energy.
One notices that, whereas �e is an intrinsic measure of the elastic disorder strength (defect
density, etc) which is a bias- and temperature-independent quantity, �ie is voltage dependent
in this model, but at a fixed voltage it should remain inversely proportional to the nanotube
length. Intriguingly, however, by using a semiclassical Boltzmann approach, a fitting of the
experimental data is achieved taking a fixed �ie (for a fixed tube length) independent of the
voltage bias [9].

The observation of a length-dependent scaling of the resistance has been reported in several
works [10, 51, 5]. Lower resistances are measured for shorter tubes, and current saturation
was shown to be reduced when decreasing L tube from 700 to 50 nm, at which no saturation
was observed for voltage bias up to 1.5 V. Again, analysis within the Fermi golden rule and
Boltzmann approach allows one to deduce some typical values for the inelastic scattering
lengths that can be as short as 10 nm [5]. The discrepancy or strong fluctuations between
estimates obtained by fitting procedures and the computed �ie (with FGR) either as reported
in the prior section or in other ab initio works [18, 19] raises some fundamental questions
about the applicability of the Fermi golden rule, Mathiessen rule and semi-classical transport
theory to tackle inelastic quantum transport in metallic carbon nanotubes, or within the context
of carbon nanotube-based field effect transistors [6]. As discussed below, our developed
methodologies suggest some failure of these semiclassical approaches in analysing quantum
transport in nanotubes in the presence of high-energy vibrational modes.
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Figure 6. Top panel: ab initio calculation of dynamical effect of the LO mode on the band structure
(adapted from [48]). Bottom panel: density of states for a metallic (10, 10) tube (left) and a
semiconducting (25, 0) tube (right) with e–ph coupling. The effective phonon amplitude for the
(10, 10) is A0 (
g = 0.302 eV), 2A0 (
g = 0.6 eV) for the (10, 10) while for the (25, 0),
A0 (
g = 0.332 eV) at t = 1600 fs. Dashed lines give the density of states of nanotubes without
phonon modulation.

6. Effect of high-energy phonons within the time-dependent description

The effect of high-energy optic modes on the band structure was first studied by Dubay and
co-workers [48]. In their work, a comparison between equilibrium band structure and the
electronic spectrum of a distorted nanotube, encoding the atomic displacements of high-energy
modes, demonstrates the occurrence of shifts of the electronic bands, that scale linearly with
the distortion amplitude (see also [26] for armchair tubes).

In [48], the band structure changes of a metallic zig-zag nanotube (the case of (12, 0)) due
to e–ph coupling was investigated. In the vanishing e–ph coupling situation, the electronic
structure shows a very small bandgap due to curvature effects. Then by considering the
LO (1591 cm−1), they introduce the relative displacement δd of the π orbital position with
respect to the equilibrium position (see figure 6 top panel). The band structures for several
values of such scaling parameter are then computed with an ab initio (density functional
theory) method. As a result, a bandgap oscillation is found, whose value is reported to follow

g = 26 eV Å

−1|δd|, whereas no detailed information about the rest of the spectrum is
given. By using the computational approach introduced in section 2, we investigate the time
dependence of the density of states. In figure 6, one shows the density of states for the (10, 10)
tube (bottom left) evaluated at time t ∼ 1600 fs ∼ 80TLO. We show the result for a doubling
in amplitude of the phonon mode. Similarly to [48], the doubling of the displacement results
in a doubling of the energy gap, which equals 
g = 0.302 eV for A0. Following the time
dependence of the density of states, we recover a complex modification of the full energy
spectrum with shifts of the van Hove singularities that cannot however be easily understood
analytically. The case with a semiconducting (25, 0) tube is also shown (bottom right) for three
values of the phonon amplitudes.
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Figure 7. Conductance for a metallic (10, 10) tube (main frame) and a semiconducting (25, 0) tube
(inset) with e–ph coupling (LO mode). The effective phonon amplitude is from bottom to top curve:
5A0, 2A0, A0. The solid lines give the exact number of quantum channels N⊥ . For the (10, 10)
case, the A0 = 0 numerical calculation and the exact number of quantum channels are also shown.

Such effects of the time-dependent modulations of the band structure are obviously at the
origin of the subsequent alteration of the conductance scaling properties, if one considers its
remaining coherent part. As discussed later on, this point should be considered with care at the
time of using semiclassical transport theories and the FGR to describe relevant transport length
scales of current–voltage characteristics of CNT-based devices.

As shown in figure 7, the modifications of the electronic conductance G(E) due to
coupling to optic LO modes are strong in the central region around the CNP, as well as for
higher energies. Besides, the scaling properties of conductance patterns are found to fluctuate
owing to time-dependent band structure changes. Besides, by considering the hot phonon
occupation scenario and the enhanced e–ph coupling by the A′

1 phonon, we let the amplitude
vary within [A0, 5A0]. The conductance as a function of Fermi energy and amplitude of the
e–ph coupling are shown for a typical (10, 10) metallic nanotube (figure 7—main frame)
and a (25, 0) semiconducting nanotube (figure 7—inset). The increase of phonon amplitude
progressively degrades the conductance all over the spectrum, although some fluctuations are
seen in the surroundings of the van Hove singularities. Close to the onsets of new subbands
(defined by the energies of the van Hove singularities), the conductance remains larger in regard
to the rest of the spectrum. This originates from the reduced velocity of charge carriers at those
energies, that results in lower propagating length L(E, t) = v(E)t (for the same evolution time
t), and weaker contribution of e–ph coupling. Note that different phonon amplitudes also result
in some band structure changes, that are reflected in the energies where the conductance of the
A0 case becomes smaller than the 2A0 case (only seen for the (10, 10) tube).

Such behaviour found within the Kubo framework, and illustrated in figure 6 seems to
indicate that high-energy phonon modes have an impact in the conductance even in the linear
response regime. This clearly brings some contradiction in the sense that in this regime
(low-bias limit) there is no phase space for inelastic processes, which are forbidden by Pauli
blocking. Therefore, how should we interpret these results?

To that end, one should notice the following points: (a) in this time-dependent description,
the ‘phonon modes’ are intrinsically activated since the atoms are forced to vibrate with a well-
defined amplitude and phase; (b) the Pauli principle is not properly taken into account in this
one-body description. Hence, these results should be interpreted as the conductance in a non-
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equilibrium situation in which the phonon modes are activated through a finite bias voltage;
however, the approximation of the linear response (Kubo) prevents us from fully addressing
the high bias voltage regime.

Another limitation of this approach is that processes of phonon emission and absorption
cannot be rigorously distinguished, at least by keeping a real e–ph interaction Hamiltonian.
As a consequence, a zero-temperature situation (in which no phonon absorption is allowed)
cannot be described within this framework. In the next section, we propose to go beyond the
limitations of the Kubo approach, by adopting a many-body treatment of inelastic transport.

7. High-energy phonons and many-body treatment of inelastic transport

The results shown before clearly hint at the importance of two ingredients of the e–ph
interaction in electronic transport through CNTs. One is the symmetry of the phonon mode
under study, which is given by the phonon polarization vectors. The fact that the phonon
frequency is high adds an important dynamical input to the problem. In principle, this
should limit the possibility of restricting ourselves to a mean-field description of the e–ph
Hamiltonian [52]. The interplay between these two ingredients leads to a wealth of novel
coherent phenomena as evidenced by recent experiments [53] and theory [32]. Recently, other
subtle coherent phenomena have also been proposed [54].

The time-dependent description used in the previous section incorporates these two
ingredients and constitutes a first step along this direction. Formally it can be seen as a
semiclassical approximation for the full many-body problem where the phonon operators are
replaced by a time-periodic function with well-defined amplitude and phase, thereby giving a
one-body time-dependent problem. Several questions naturally arise: What are the limitations
of this scheme? What are the ingredients that are missing as compared to a full many-body
description? An attempt to answer these questions within a unified framework will be presented
below along the lines given in [33].

Our aim is to make evident to the reader the need of using a full many-body description
of the e–ph interaction that: (a) accounts for the proper symmetry of the considered phonon
modes; (b) allows the study of the nonlinear response regime; (c) allows a non-perturbative
description of the e–ph interaction. The importance of (a) and (b) was evidenced in [32], where
the interaction with the LO mode in CNTs was shown to lead to phonon-induced energy gaps
at high bias. We will comment more on this issue later.

Another important issue concerns the out-of-equilibrium phonon population. If the
phonons are not able to equilibrate in a time that is rapid compared to the mean time between
successive electrons entering the device, the phonon population, which can be characterized by
the probability distribution Pn (n being the number of phonons), is driven out of equilibrium.
In this respect, recent studies involving ballistic CNTs [13, 18, 19] and CNTs in the Coulomb
blockade regime [55] propose a hot phonon scenario in order to explain the quantitative
disagreement between theoretical and experimental estimations of inelastic mean free paths
in CNTs.

On the other hand, in [56] Mitra et al presented counterintuitive numerical results which
show that the phonon probability distributions are farther from equilibrium for weak e–
ph couplings than for strong ones. These intriguing results were confirmed by analytical
calculations carried out in the small e–ph coupling limit by Koch et al [57]. Specifically, they
found [57] that the width of the phonon probability distribution diverges as (γ e−ph)−ζ when
the e–ph coupling strength γ e−ph decreases. As a consequence, in non-equilibrium conditions,
a breakdown of perturbation theory in the e–ph coupling is possible. This opens new exciting
issues for future research on non-equilibrium phonons. Besides, this points out the need to go
beyond perturbative approaches for the e–ph interaction.
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In the following we introduce a suitable Hamiltonian description for the e–ph interaction
and outline a many-body scheme that allows the description of quantum inelastic transport as
developed in [32].

7.1. Hamiltonian description for the e–ph interaction

In this section we will revisit the Hamiltonian description of the effects of vibrations on the
electronic transport. Our aim is to give some unified picture for the time-dependent description
given in the previous sections and a full many-body scheme. Our starting point is the modelling
of the Hamiltonian for the e–ph system. For simplicity, an infinite CNT is considered and
the electrons are allowed to interact with phonons only in the central part of the CNT. The
Hamiltonian of the system can be written as a sum of an electronic part, a phonon part and an
e–ph interaction term:

H = He + Hph + He−ph. (21)

The electronic part is elaborated through a π -orbital effective model (i.e. a single π orbital per
carbon atom) as in section 2:

He =
∑

i

Ei c
†
i ci − γ0

∑

〈i, j〉
[c†

i c j + H.c.], (22)

where c†
i and ci are the creation and annihilation operators for electrons at site i , γ0 is the π–π

integral overlap; notice that the second summation is restricted to nearest neighbours in the
CNT. Let us consider a single phonon mode of energy h̄ω0. Then, the phonon term is simply

Hph = h̄ω0b†b, (23)

where b† and b are the phonon operators. The last contribution is the e–ph interaction term.
Lattice vibrations will produce a time modulation of the bond’s length, thereby changing the
hopping matrix elements. Our starting point to describe these phenomena is the Su–Schrieffer–
Heeger Hamiltonian, where the contribution arising from the phonons is found by assuming
a phonon modulation of the hopping matrix elements [52, 58], and keeping only the linear
corrections to the atomic displacements from equilibrium. This leads to

γi, j = γ0 + αδ̂i, j · δ �Qi, j , (24)

where δ̂i, j is a unit vector in the bond direction, whereas δ �Qi, j sets the relative displacement of
the neighbouring carbon atoms, and α is the e–ph coupling strength defined as the derivative of
γ0 with respect to the bond length displacement. At this point several descriptions are feasible.
One possibility is to replace the second term in the previous equation by a time-dependent
function with well-defined amplitude and phase [59]. This leads to a Hamiltonian similar to the
one introduced in section 2. An alternative is to proceed by performing a further quantization
of the atomic displacements. This gives the many-body e–ph interaction term:

He−ph =
∑

〈i, j〉vib

[γ e−ph
i, j c†

i c j (b
† + b) + h.c.], (25)

where the e–ph interaction is allowed only in a finite section of the CNT of length L, b and b†

are the phonon operators and the e–ph matrix elements γ
e−ph
i, j are generally given by

γ
e−ph
i, j = α

√
h̄/(2mω0)̂δi, j · [eν

i (q) − eν
j (q)], (26)

where the phonon mode eigenvector eν
i (q) gives the atomic displacements from the equilibrium

positions.
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Figure 8. Total transmission probability as a function of the energy of the incident electrons for a
zig-zag (24, 0) CNT. The I–V characteristics for different values of the e–ph coupling strength α

(α0 � 10 eV, 2α0 and 3α0) are shown in the inset with solid, dashed and dotted lines respectively.
The results correspond to CNTs in the presence of e–ph interaction with an A1(L) mode inducing
displacements along the axis direction (drawings).

In order to solve this many-body Hamiltonian, a strategy is to use the approach introduced
in [60, 61] as done in [32] and [33] for transport in CNTs and in [62–66] in other contexts.
The main idea behind this approach is to construct an equivalent multichannel one-body
problem. This is done by rewriting the Hamiltonian in an appropriate basis for the e–ph
Fock space (a single electron plus phonons). The emerging picture is that of a multichannel
one-body problem where the asymptotic states in the e–ph Fock space include both the
electronic and the new vibrational degrees of freedom; each phonon mode adds an additional
dimension to the problem. For more details on this approach we refer the reader to the original
papers [60, 61, 65].

The main advantages of this Fock-space approach are three-fold: it is variational in the e–
ph interaction, thus allowing a non-perturbative calculation; it allows us to clearly distinguish
the contribution from different elastic and inelastic scattering channels; and it allows us to
calculate currents both in the linear and nonlinear response regimes.

7.2. Phonon-induced energy and transmission gaps in CNTs

The Fock space approach mentioned before was applied to the case of zig-zag and armchair
CNTs in [32, 33] in the presence of e–ph interaction with a single optical phonon mode. The
main result is reproduced in figure 8. There, the total transmission is shown as a function of
the energy of the incident electrons. Different curves correspond to different tube lengths.
The main finding is the appearance of a dip in the transmission at h̄ω0/2 above the CNP
that progressively deepens to reach a full gap for L ∼ 100 nm. This gap emerges as the
result of the e–ph interaction which removes a degeneracy between many-body states giving
a resulting effect which is beyond ordinary perturbation theory. For more details we refer
the reader to the original papers [32, 33]. We emphasize that the observed reduction in
the transmission probability is complemented by an increase in the inelastic reflection. For
sufficiently long tubes and when the phonon mode is activated, this mechanism gives a perfect
inelastic backscattering (unit probability) in an energy range around h̄ω0/2 above the CNP.

At low bias this effect will be suppressed by Pauli blocking and it develops for bias voltages
of the order of h̄ω0. The current–voltage characteristics obtained for a simple model for the
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potential profile are shown in the inset [32, 33]. Different lines correspond to different values
of the e–ph interaction strength. These results show an onset of current saturation at around
30 μA for bias of the order of h̄ω0. One notes that this saturation value equals (4e/h)h̄�ph for
perfect contacts.

The current then continues to increase for higher bias, a fact that can be attributed to
the lack of other ingredients such as e–ph interaction with other modes, a description of
the self-consistent electrostatics and out-of-equilibrium electronic and phonon populations.
Nevertheless, this gives a hint to the possible manifestations of this mechanism that to our
knowledge has been overlooked in the literature.

8. Conclusions

In summary, we have analysed the effect of electron–phonon interaction with low- and high-
energy phonons by using different frameworks. Specifically, we have presented a description
based on an effective time-dependent Hamiltonian for the electron–phonon interaction [15] as
well as more recent results based on a many body-Hamiltonian [32, 33]. Our results hint at the
importance of effects beyond perturbation theory which require a description which takes into
account the symmetry as well as the dynamics of the phonon modes. Further work is clearly
needed to unveil the role of other phonon modes in transport as well as the possible interplay
with electrostatic effects, in the context of understanding carbon nanotube-based field effect
transistors [67].
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[47] Jiang J, Saito R, Grüneis A, Dresselhaus G and Dresselhaus M S 2004 Chem. Phys. Lett. 392 383
[48] Dubay O, Kresse G and Kuzmany H 2002 Phys. Rev. Lett. 88 235506

Dubay O, Kresse G and Kuzmany H 2003 Phys. Rev. B 67 035401
[49] Samsonidze Ge G, Saito R, Jorio A, Pimenta M A, Souza Filho A G, Grüneis A, Dresselhaus G and
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